ET Theory 101

USCID Workshop

http://biomet.ucdavis.edu

PMhr, PMday, PMmon CUP, SIMETAW (DWR link)

R.L. Snyder, Biometeorology Specialist

Copyright © Regents of the University of California

Questions 1 and 2

1. How many molecules of air are in a cubic meter?

2.69 x 10²⁵

1. If six billion people count 1000 molecules per hour, it would take 511 million years to count the number of molecules in 1 m³

26,900,000,000,000,000,000,000 molecules m⁻³

2. The air is mostly nitrogen? (T/F)?

False

2. Air is mostly empty space. Less than 0.1% of the volume is occupied by molecules

Questions 3 and 4

- 3. Which molecules move faster?
 A. nitrogen
 B. oxygen
 C. carbon dioxide
 D. water vapor
- 4. When saturated, the air cannot hold more water vapor (T/F)?

3. At 30°C, velocities
N₂ - 1709 Km h⁻¹
O₂ - 1603 Km h⁻¹
CO₂ - 1366 Km h⁻¹
H₂O - 2136 Km h⁻¹

4. False! Less than 0.1% of volume is occupied. Air can hold more water.

- 5. How many molecule collisions per second occur in a m³ of air?
- 5. There are about 595 trillion collisions per second between air molecules in a m³ of air.

26,900,000,000,000,000,000,000 molecules m⁻³ Occupy < 0.1% volume 595,000,000,000,000 collisions/sec

Horstmeyer, S. 2001. Weatherwise 54:20-27.

Sensible Heat & Temperature

Lower temperature Less sensible heat Higher temperature More sensible heat Water Molecules consist of one oxygen and two hydrogen atoms

Methods of Heat Transfer Latent Heat - Chemical Heat

More Water Vapor More Latent Heat

Latent heat

Questions 6

6. Your ice cream will melt faster at 35% RH than at 75% RH (T/F)? 6. False, there is more total heat in humid than in dry air to melt the ice cream

Which wet towel dries fastest?

30 % RH

70 % RH

Adiabatic Process

Questions 7

7. Is there evaporation in a greenhouse with 100% relative humidity? 7. Yes! But both the temperature and vapor pressure must increase following the saturation vapor pressure curve.

Diabatic Process

Radiation

$$\varepsilon = 1.0$$
 for a black body $\varepsilon < 1.0$ for a gray body

 $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-1}$

 $T = absolute temperature = {}^{\circ}C+273.15$

Direct Radiation (Q)

- Radiation that comes directly from the sun
- The amount of energy received per unit area is called "Irradiance" and the units are commonly $W m^{-2} = J s^{-1} m^{-2}$.
- The amount of energy received depends on the angle of incidence of the radiation

Direct beam radiation interception (W m⁻²)

 $Q_s = Q \cos(\alpha)$

Diffuse Radiation (q)

- Solar radiation that is scattered by the sky and comes from all directions.
- During much of the day, about 10 to 15% of the radiation received on a flat surface is diffuse radiation.
- The diffuse radiation is nearly the same regardless of the surface orientation.
- The percentage of diffuse radiation is higher near sunrise and sunset.

Direct and diffuse radiation (W m⁻²)

500	433	250	Q_s
535	468	285	$Q_s + q$

 $R_s = Q_s + q$ $q \approx 0.15 Q_s$ on a horizontal sfc

Vegetation height (m)

Net solar radiation (W m⁻²)

500	433	250	Q _s
535	468	285	$Q_s + q$
401	351	214	$\alpha = 0.25$

Net radiation (W m⁻²)

500	433	250	Q_s
535	468	285	$Q_s + q$
401	351	214	$\alpha = 0.25$
301	251	114	$R_{Ln} = -100$

 $R_n = R_{sd} \left(1 - \alpha \right) + R_{Ld} + R_{Lu}$

Net Radiometer

 C_V – volumetric heat capacity

G

SURFACE ENERGY BUDGETS

Sensible Heat Flux Density

$$H = -\rho C_p \kappa \left(\frac{T_2 - T_1}{z_2 - z_1}\right)$$

$$H = -\rho C_p \left(\frac{T_2 - T_1}{r_h} \right)$$

$$\frac{1}{r_h} = \frac{\kappa}{Z_2 - Z_1} = \mathcal{G}_h$$

Latent Heat Flux Density

$$LE = -\kappa \left(\frac{\rho C_p}{\gamma}\right) \left(\frac{e_2 - e_1}{z_2 - z_1}\right)$$

$$LE = -\left(\frac{\rho C_p}{\gamma}\right) \left(\frac{e_2 - e_1}{r_w}\right)$$

$$\frac{1}{r_w} = \frac{\kappa}{z_2 - z_1} = g_w$$

Microclimate & ETo

- Fetch Requirements
- Shading
- Wind blocking
- Marine effects

Fetch Requirements (Indio)

Fetch (98 m Vs 181 m)

Empirical ETo – El Dorado Country Club

Adjustments for Regional effects Wind Blockage Sunrise-Sunset Advection

Empirical Equations CIMIS Regional effects

El Dorado Country Club

Torrey Pines Vs Mira Mar

Temperature Model

Wind Correction

Mira Mar CIMIS Wind Speed (m s⁻¹)

Torrey Pines ETo Model

Landscape Coefficient

 ET_L - measured

Dense Canopy Light Interception

Sparse Canopy Light Interception

Some light reflected. Increases sensible heat near the surface.

Density Correction

C_G Ground Cover (%)

Citrus Energy Balance - Lindsay 2001

Local Advection

Fog Contribution

Water Table Contribution

Thanks