Soil Heat Flow and Temperature

By R.L. Snyder and K.T. Paw U

Copyright – Regents of the University of California

Created – June 22, 2000

Last Revision –June 13, 2001

Question: Why do we want to know the soil heat flow and temperature?

Answer: We need *G* **at the surface to determining the energy balance**

Neglecting small energy components, the energy balance on a surface can be expressed using the following equation, where R_n is net radiation, G is the soil heat flux density, *H* is the sensible heat flux density, and *LE* is the latent heat flux density.

NET RADIATION = SOIL HFD + SENSIBLE HFD + LATENT HFD

 R_N = G + H + LE R_N

In this document, the methodology to estimate G at the surface is discussed.

DEFINITIONS

- 1) Temperature (T) is a measure of the heat stored ($\rm{^oC}$ or K)
- 2) Upper temperature (T_1) is the temperature at depth z_1
- 3) Lower temperature (T_2) is the temperature at depth z_2

4) Volumetric Heat Capacity is the amount of heat required to raise the temperature of a unit volume by one Kelvin (J m $^{-3}$ K $^{-1}$)

5) Thermal Conductivity (C_1) is the ratio of the heat flux density to the temperature gradient in (W m $^{-1}$ K $^{-1}$)

SOIL HEAT FLUX DENSITY

1) Soil heat flux density (*G*) is the conduction of energy per unit area in response to a temperature gradient. For small depth changes,

$$
G \approx -C_1 \left(\frac{\partial T}{\partial z} \right)
$$

(1)

Here, the thermal conductivity \mathcal{C}_1 = KA , where K is the heat conductivity of the material in W m⁻³ K⁻¹ and *A* is the surface area in m², so for heat flow through a unit surface area \mathcal{C}_1 has the units W m⁻¹K⁻¹. In Eq. 1, is positive when the temperature decreases with depth in the soil. The negative sign is included to make *G* positive when heat is transferring downward. Because of instrument limitations, it is not possible to accurately measure the temperature gradient unless there is sufficient distance between the sensors. Consequently, *G* is estimated as

$$
G \approx -C_1 \left(\frac{T_2 - T_1}{z_2 - z_1} \right)
$$

(2)

where z_2 is sufficiently far below z_1 to allow for a measurable difference between T_2 and T_1 . Equation 2 assumes that C_1 is constant with depth in the soil.

2) Thermal Diffusivity (*k*) is the ratio of the thermal conductivity to the volumetric heat capacity.

$$
\kappa = \frac{C_1}{\rho_s C_\rho} = \frac{C_1}{C_V}
$$

(3)

 C_1 =the thermal conductivity (W m⁻¹ K⁻¹)

 r_s = the apparent soil density (kg m⁻³)

 C_p = the apparent mass specific heat capacity (J kg⁻¹ K⁻¹)

 C_V = volumetric heat capacity (J m⁻³ K⁻¹)

 $k =$ thermal diffusivity (m² s⁻¹)

where $C_v = \rho_s C_v$

(4)

So the thermal conductivity in terms of diffusivity and volumetric heat capacity is $C_1 = \kappa \rho_s C_o = \kappa C_V$

(5)

Therefore, *G* can be expressed in terms of diffusivity, volumetric heat capacity, and the temperature gradient as: $G = -\kappa C_v \frac{\partial F}{\partial z}$

(6)

In terms of the temperature gradient, *G* is

 $G = -\kappa C_v \left(\frac{T_2 - T_1}{Z_1 - Z_2} \right)$

(7)

The variable *k* is useful as a measure of how fast the temperature of a soil layer changes. The rate at which the heat content of a layer of soil changes depends on the volumetric heat capacity (\mathcal{C}_V) and the rate of temperature change of the soil volume per unit time. For a unit surface area, the rate of change in heat storage within the soil layer is expressed as $-C_V \frac{\partial T}{\partial t} \Delta z$. For a unit surface area, the rate of change in heat storage within the soil is also equal to the change in heat flux density through the soil layer $\frac{\partial G}{\partial z} = \frac{\partial}{\partial z} \left(-C_1 \frac{\partial T}{\partial z} \right) \Delta z$. Assuming that the physical properties of the soil are constant with depth in the soil and equating these two expressions, we get $-C_v \frac{\partial T}{\partial t} dz = -C_1 \frac{\partial}{\partial z} \left(\frac{\partial T}{\partial z}\right) dz$ which simplifies to $\frac{\partial T}{\partial t} = \frac{C_1}{C_v} \frac{\partial}{\partial z} \left(\frac{\partial T}{\partial z}\right) = \kappa \frac{\partial^2 T}{\partial z^2}$

Therefore, *k* is useful to determine the rate of temperature change of a soil layer. Recall that k is directly proportional to ${\mathcal C}_{1}$ and inversely proportional to ${\mathcal C}_{\mathcal V}$. Both ${\mathcal C}_{1}$ and \mathcal{C}_v increase as the water content of the soil increases; however, \mathcal{C}_1 increases more rapidly with water content when the soil is dry and it slows as the soil becomes wet. $\mathcal{C}_{\mathcal{V}}$ continues to increase even when the soil is relatively wet. Consequently, for a dry soil, *k* increases with water content, but it slows and sometimes decreases when the soil nears saturation. As a result, the maximum change in temperature with time will occur at a water content below saturation.

Question: How do you determine *G= G* **at the surface?** *1*

The change in heat storage of a layer of soil between the surface $\rm z_{1}$ =0 and some depth $\rm z_{2}$ is given by

(9)

where *G* is positive downward into the soil.

Note: Soil heat flux density is positive downwards. When *DS* **= -(***G – G* **) is posi-***2 1* **tive, then more heat is entering the top than leaving the bottom of the soil layer** and the soil is warming. If DS = -(G_2 – G_1)is negative, then more heat is leaving **than entering the layer and the soil is cooling.**

Examples:
\nLet
$$
G_I = 100 \text{ W m}^{-2}
$$
 and $G_2 = 50 \text{ W m}^{-2}$, then
\n $\Delta S = -(50-100) = 50 \text{ W m}^{-2}$ and the soil is warming
\nLet $G_I = -100 \text{ W m}^{-2}$ and $G_2 = -50 \text{ W m}^{-2}$, then
\n $\Delta S = -[-50-(-100)] = -50 \text{ W m}^{-2}$ and the soil is cooling
\nLet $G_I = -50 \text{ W m}^{-2}$ and $G_2 = 10 \text{ W m}^{-2}$, then
\n $\Delta S = -[10-(-50)] = -60 \text{ W m}^{-2}$ and the soil is cooling
\nLet $G_I = 50 \text{ W m}^{-2}$ and $G_2 = -10 \text{ W m}^{-2}$, then
\n $\Delta S = -[-10-50] = 60 \text{ W m}^{-2}$ and the soil is warming

Accounting for the change in soil heat storage is important for estimating *G* at the surface. This is clearly indicated in Fig. 1, which shows a plot of G_2 + DS versus G_2 for half hour measurements of G_{2} at 0.02 m depth under a cover of about 0.1 m tall, cool-season grass. The regression equation indicates that the soil heat flux density at the surface is under-estimated by about 40% when not corrected for the change in soil heat storage.

FIGURE 1. SURFACE SOIL HEAT FLUX DENSITY (G) CALCULATED USING A HEAT FLUX PLATE AT 0.02 M DEPTH (G) AND THE 2 CHANGE IN HEAT STORAGE (DS) ESTIMATED FROM TEMPERATURE CHANGE AT 0.01 M DEPTH VERSUS G₂ ALONE USING HALF HOUR **DATA COLLECTED UNDER 0.10 M TALL, COOL-SEASON GRASS. THE SOIL WAS A YOLO CLAY LOAM SOIL THAT WAS IRRIGATED ONCE PER WEEK.**

CHANGE IN HEAT STORAGE

The net change of heat storage per unit time (*DQ*/*Dt*) in **J s⁻¹** within a soil volume (*V*) is given by:

 $\frac{\Delta Q}{\Delta t} = C_v \frac{\partial T}{\partial t} \cdot V \approx C_v \frac{T_t - T_i}{t_t - t_i} V$

(10)

J s⁻¹ = (J m⁻³ K⁻¹) (K s⁻¹) (m³)

where T_f is the final temperature at time t_f and T_i is the initial temperature at time t_i .

Because the change in stored soil heat (*DS*) per unit surface area is equal to the net rate of heat storage divided by the soil surface area and *V/A=Dz,* we can calculate *DS* $\sin W m^2$ as

$$
\Delta S = \frac{\Delta Q}{\Delta t} \frac{1}{A} = C_v \left(\frac{T_f - T_i}{t_f - t_i} \right) \frac{V}{A} = C_v \left(\frac{T_f - T_i}{t_f - t_i} \right) \Delta z
$$

$$
(11)
$$

If G_{2} is measured and DS is calculated using Eq.11, then G (= G_{1} at the surface) is calculated using:

 $G = G_1 = G_2 + \Delta S$

(12)

Example: Given a uniform soil with C_V = r_sC_p = 1.677×10 6 J m⁻³ K⁻¹, a soil heat **flux plate placed at an 0.08 m depth, and soil-averaging temperature sensors located at 0.02 and 0.06 m depth to represent the change in heat storage between** the surface and 0.08 m depth. If the heat flux plate measurement averages \boldsymbol{G}_2 = 20 W m 2 and the average soil temperature from the two sensors increases by 1 \pm K during a one-hour period, what is the soil heat flux density $(G = G_1)$ at the **surface?**

$$
\Delta S = C_V \left(\frac{T_f - T_i}{t_f - t_i} \right) \Delta z
$$

$$
\Delta S = (1.677 \times 10^6 \text{ J} \text{m}^{-3} \text{K}^{-1} \left(\frac{1 \text{K}}{3600 \text{s}} \right) (0.08 \text{m}) = 37.3 \text{W} \text{m}^2
$$

$$
G = G_1 = G_2 + \Delta S = 20 + 37.3 = 57.3 \text{ W} \text{m}^{-2}
$$

Question: Using the same criteria as above but now with the mean soil temperature dropping by 1 K, what is the soil heat flux density (G = G_1) at the surface?

$$
\Delta S = C_V \left(\frac{T_f - T_i}{t_f - t_i} \right) \Delta z
$$

$$
\Delta S = (1.677 \times 10^6 \text{ J} \text{m}^{-3} \text{K}^{-1} \left(\frac{-1 \text{K}}{3600 \text{s}} \right) (0.08 \text{m}) = -37.3 \text{W} \text{m}^{-2}
$$

$$
G = G_1 = G_2 - \Delta S = 20 + (-37.3) = -17.3 \text{ W m}^{-2}
$$

If the soil heat flux density at 0.08 m depth is G = 20 W m⁻² and the temperatures **20 C and 20.8 C are measured on either side of the heat flux plate. What is the o o** thermal conductivity (C_1) if the temperature sensors are 0.02 m below and **above the heat flux plate? Which temperature is recorded above the heat flux plate?**

Thermal Properties of Soils

Heat capacity depends on the mineral, organic matter, and water content of a soil. The apparent heat capacity (\mathcal{C}_v) on a volume basis has the units J m⁻³ K⁻¹ and on a mass basis (\mathcal{C}_p) it has the units J kg⁻¹ K⁻¹. Equation 13 is used to express heat capacity.

$$
C_{v} = \rho_{s} C_{p} = c_{\rho a v} \rho_{b} + c_{\rho w} \rho_{b} \theta_{m}
$$

(13)

J $m^{-3}K^{-1} = (kg \, m^{-3}) (J \, kg^{-1} K^{-1})$

where r_s is the apparent density in kg of moist soil per m 3 , r_b is the bulk density of the soil in kg of dry soil per m 3 , $c_{\it pav}$ is the average heat capacity on a mass basis for the solid constituents of the soil in J per kg of dry soil per Kelvin, q_m is the water content on a mass basis in kg of water per kg of dry soil, and c_{pw} is the heat capacity of water on a mass basis in J per kg of $\rm H_2$ 0 per Kelvin.

The heat capacity of the solid constituents of the soil ($\mathcal{C}_{\mathit{pav}}$) depends on the amount of sand, clay, silt, and organic matter in the soil. For most mineral soils,

$$
c_{\scriptscriptstyle pav}^{}\!\approx 837
$$

J $kg^{-1}K^{-1}$

The heat capacity of the water component of the soil (q_{mcpw}) depends on the water content and the heat capacity for water.

$$
c_{\mu\nu}\rho_b\theta_m = \frac{\rho_{\nu}}{\rho_{\nu}}\left(c_{\mu\nu}\rho_b\theta_m\right) = \left(\rho_{\nu}c_{\mu\nu}\right)\rho_b\left(\frac{\theta_m}{\rho_{\nu}}\right)
$$

 J $kg^{-1}K^{-1}$

The volumetric heat capacity is $r_w c_{pw}$, which is approximated as

 $J m^{-3} K^{-1}$

and the volumetric water content q_v in $\mathrm{m}^3 \, \mathrm{H}_2 \mathrm{O}$ per m^3 of dry soil is

$$
\theta_{\rm v} = \rho_{\rm b} \left(\frac{\theta_{\rm m}}{\rho_{\rm w}} \right) \Rightarrow \frac{\text{kg dry soil}}{\text{m}^3} \cdot \frac{\text{kg H}_2\text{O}}{\text{kg dry soil}} \cdot \frac{\text{m}^3\text{H}_2\text{O}}{\text{kg H}_2\text{O}} \Rightarrow \frac{\text{m}^3\text{H}_2\text{O}}{\text{m}^3}
$$

Therefore, the heat capacity of the soil component is approximated as

$$
c_{\scriptscriptstyle\rho a \nu} \rho_{\scriptscriptstyle b} \approx 837 \, \rho_{\scriptscriptstyle b}
$$

and the heat capacity of the water component is approximated as

$$
(\rho_w c_{pw}) \rho_b \left(\frac{\theta_m}{\rho_w}\right) = (\rho_w c_{pw}) \theta_v \approx 4.19 \times 10^6 \theta_v
$$

Substitution into Eq. 13 gives the following approximation for $\mathcal{C}_{\mathcal{V}}$. $C_v = 837 \rho_h + 4.19 \times 10^6 \theta_v$ **-3 -1**

$$
\mathbf{J} \, \mathbf{m}^3 \, \mathbf{K}^1 \qquad \qquad (15)
$$

Because we are interested in heating and cooling the soil, it is useful to have an expression for the amount of energy (*Q*) needed to raise or lower the temperature of a known volume (V) of soil from T_i to T_f . The equation is $Q = C_v (T_f - T_i) V$

$$
J = J m^{-3} K^{-1} (K) m^{3}
$$
 (16)

Problems:

1) Given a wet soil at $T_i = 18^{\circ}\text{C}$ with $q_v = 0.23$ and $r_b = 1300$ kg m⁻³. Find the amount of heat required to raise a 1 m^{3} volume of soil to a temperature T_{f} = 20ºC for a surface area of 1 m^{2} to a depth of 1 m.

$$
Q = (837 \rho_b + 4.19 \times 10^6 \theta_c) (T_i - T_f) V
$$

Q = (837×1300 + 4.19×10⁶ × 0.23) (20 –18) (1.0 m³)
Q = (1.088100×10⁶ + 0.963700×10⁶) (2) (1) = 4.10×10⁶ J = 4.10 MJ

2) Given a wet soil with heat flux $G = 25$ W m⁻² into the soil surface ($q_v = 0.18$, $r_b = 0.18$ 1300 kg m⁻³ and $Q = G A t$). Find the average temperature increase that occurs in one day in the top 1 m of soil assuming that the heat is evenly distributed in the 1 m soil layer.

$$
Q = C_v V \Delta T
$$

\n
$$
Q = G \Delta t
$$

\n
$$
\Delta T = \frac{G \cdot A \cdot t}{C_v \cdot V}
$$

\n
$$
\Delta T = \frac{25 J s^{-1} m^{-2} \times 1 m^2 \times 86400 s \, d^{-1} \times 1 d}{(837 \times 1300 + 4.19 \times 10^6 \times 0.18) \times 1} = \frac{2.16 \times 10^6}{1.84 \times 10^6} = 1.17 \, ^\circ \text{C}
$$

3) Given a wet soil with q_v = 0.18, r_b = 1300 kg m⁻³, Q = *G A t*, and the average daily net radiation is R_n = 150 W m⁻², find the ratio G/R_n if the increase in average soil temperature to 1 m depth over a month's time is 10° C.

$$
G = \frac{Q}{A \cdot t} = \frac{C_v V(T_t - T_i)}{A \cdot t}
$$

From problem 2, we know that Cv V = 1.8410 6 J m⁻³ K⁻¹

$$
G = \frac{1.84 \times 10^6 \text{ J m}^{-3} \text{ K}^{-1} \times 1 \text{ m}^3 \times 10 \text{ K}}{1 \text{ m}^2 \times 1 \text{ m} \times 86400 \text{ s d}^{-1} \times 30 \text{ d m} \text{ o}^{-1}} = 7.1 \text{ W m}^{-2}
$$

$$
\frac{G}{R_n} = \frac{7.1}{150} = 0.047 = 4.7\%
$$

4) Given a soil with the following temperatures and properties, find the quantity of heat stored in the soil per unit area (*Q*/*A*), for the period from 0500 to 1400 hrs.

$$
\mathbf{Q}/A = \left[(837 \times \boldsymbol{\rho}_b + 4.19 \times 10^6 \times \boldsymbol{\theta}_b) \times V \times \Delta T \right] / \mathbf{A}
$$

(J kg⁻¹K⁻¹) (kg m⁻³) (J m⁻³K⁻¹) (m³) (K) (m²)

 $0.00 - 0.05$ m

 $Q/A = [(837 \times 1000 + 4.19 \times 10^{6} \times 0.05) \times 0.05 \times 20]/1 = 1.048 \times 10^{6} = 1.05$ MJ m⁻² $0.05 - 0.20$ m $Q/A = [(837 \times 1100 + 4.19 \times 10^{6} \times 0.10) \times 0.15 \times 10]/1 = 2.013 \times 10^{6} = 2.01 \text{ MJ m}^{-2}$ $0.20 - 0.60$ m $Q/A = [(837 \times 1200 + 4.19 \times 10^{6} \times 0.20) \times 0.40 \times 7]/1 = 5.165 \times 10^{6} = 5.17$ MJ m⁻² $0.60 - 1.20$ m $Q/A = [(837 \times 1300 + 4.19 \times 10^{6} \times 0.25) \times 0.60 \times 1]/1 = 1.283 \times 10^{6} = 1.28$ MJ m⁻²

Total heat stored = $1.05 + 2.01 + 5.17 + 1.28 = 9.51$ MJ m²