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Introduction

These notes contain two methods for determining the Penman-Monteith equation.
The first is the flux gradient and the second is a psychrometric derivation. The flux
gradient method is simpler to derive, but the psychrometric method is more concep-
tually understandable. In the end, a discussion of weather effects on evaporation
from wet surfaces and other equations are discussed.

Flux Gradient Derivation

Evaporation rate from a wet surface is determined using the flux gradient approach
for estimating sensible and latent heat flux density. Recall that sensible heat flux
density is estimated as
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where T is the air temperature, T, is the surface temperature, and ry is the resistance
to sensible heat transfer. The negative sign makes H positive away from the surface.
Latent heat flux density is

e, (%) —e] 2)

where is the resistance to sensible heat flux and T, is the surface temperature. The
variable g* is the psychrometric constant that is corrected for the ratio of the resis-

tance vapor transfer over the resistance to sensible heat transfer (3*= y[r—" ). We
Far

want to express [E in terms of parameters that we know and we do not know the sur-
face temperature (T,). However, we do know the air temperature (7), so we can esti-
mate T, using a psychrometric approximation. We need to assume that the surface
temperature is approximately equal to the wet-bulb temperature or the approxima-
tion is not valid. We know that the slope D of the saturation vapor pressure curve
evaluated at the air temperature is approximately
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Assuming that T,, » T, then
e,(T,)~e,(T)-AT-T) @
Substituting for ey(T,) in Eq. 2, we get
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However, recall that H is a function of T- T,. Rearranging Eq. 1, we can express T —
T, as:
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Substituting this expression into Eq. 4, we get
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Rearranging terms, we get

AE = [ e]+—H (€))
¥ 'rH ¥

For a non-adiabatic process, where Qy, is the net source of external energy flux,
H =0, - AEF. For a plant canopy, Q, = R, - G. By substitution, we get

e+ 2o, -28)  (9)
¥
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or
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Moving [E to one side of the equation, we get
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but
1+£* AE = "5‘+i’*1£ (12)
¥ ¥
so [E is
+ T —glrt
R,E=&QH dep[é'.ﬁ[ :] €Fu (13)
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This is the Penman-Monteith equation for evaporation from a wet surface. Note that
the left-hand term in the numerator is the diabatic contribution and the right-hand
term is the adiabatic contribution to evaporation from a wet surface.

lE for an amphistomatous leaf (stomata on one surface)

Recall that the resistances to latent and sensible heat transfer from a wet surface are
different and a correction for the psychrometric constant is

y* = [i]r (14)
Yo
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Ignoring the small transfer through the cuticle, the resistance to vapor transfer for a
leaf can be separated into the stomatal resistance to transfer from the cell surfaces,
inside the leaf, to the stomata openings (rg) and the aerodynamic resistance from the
leaf surface through the boundary layer (rp). The resistance is in series, so we have .
If we assume that the aerodynamic resistance to vapor transfer through the leaf
boundary layer is equal to the aerodynamic resistance to sensible heat transfer,
then we have:

F,x=["3+rs]?,=["’a +rs]?=[1+r_5]?- (15)
Far T T

Then Eq. 13 can be written as

_AD, + 0T, [;35 (T —e-lr.,,'l
n ] (16)
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Equation 16 is the Penman-Monteith equation for a leaf.
lE from a canopy

For a canopy, the resistance to vapor transfer from the canopy to the ambient air
above can be separated into aerodynamic resistance from a fictitious level in the
canopy to the air above (r,,) and the canopy resistance (r.) from the canopy elements
to the fictitious level. Typically, the fictitious level is taken to be at the level where
momentum transfer equals zero (d + z, or the height of the zero plane displacement
plus the roughness length). For a dense, uniform canopy, r. is mainly affected by
stomatal resistance of the plant leaves; however, some water vapor flux can also
come from the soil or surface water if the plants are wet. Using the same analogy as
for an amphistomatous leaf, the total resistance to vapor transfer (ry) from the
canopy is », =, +r.. If we assume that the aerodynamic resistance values for sensi-
ble and latent heat flux from the fictitious level to the ambient air are equal (

r, =rgz =r,), then

S S ol A
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If an independent measure of evaporation is available, the evaporation is not re-

duced by water stress, soil evaporation is negligible, and the aerodynamic resistance
is known, then the Penman-Monteith equation:
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provides a method to evaluate differences in plant stomatal effect on evaporation
from canopies.

Psychrometric Derivation

The difference in the enthalpy (total energy content) of the ambient air and air at a
wet surface occurs as a result of energy transfer to the surface that affects the sensi-
ble and latent heat content of the air. If the rate of adiabatic and diabatic heat trans-
fer is known, then psychrometric relationships can be used to estimate the latent
heat flux density. Using a psychrometric chart (Fig. 1), the rate of energy supply to
increase the vapor pressure from e at point A to e4(T,) at point C determines the total
latent heat flux density (LE). From point A to B is an adiabatic process, where the en-
ergy to increase the vapor pressure from e to es(T,,) comes from sensible heat trans-
fer from the ambient air. The rate at which this occurs depends on the aerodynamic
resistance to sensible heat transfer (rg) from the air. From point B to point C is a dia-
batic process, where the rate of energy supply depends on the net external energy
supply (Q,) to the surface by radiation and conduction.
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Figure 1. Adiabatic process to raise vapor pressure from e to ey (T},

Based on the psychrometric relationships shown in Fig. 2, it is clear that

es(T) —el(Ty) =(T-T,)D (19)
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and

es(Ty)-e=(T-Ty,) g* 20)

T : : : :
where 3* = [—"]y accounts for the difference in resistance to sensible and latent
Far

heat flux.
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Graphical representation of extemal enemy partitioning to labent and sensible heat in 2 dabatic process.
Figure 2. Energy partitioning in a diabatic process
Because
2,(T)-e=[e,(T)-2,(T,)]+[e,(T,) -2]= (T -T, )+ (T - T, )p* 21)
we know that
g (Tl—e=(T-T,(A+7* (22)
and by rearranging, we get

g |7)-¢

T-T, _all)me (23)
A

Since the energy required to increase vapor pressure from e to e4(T,,) is equivalent

raising the temperature from T,, to T and the rate of sensible heat flux density is

H=—‘GCF (T-T,) (24)

P
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By substitution, the latent heat flux density due to adiabatic heat transfer (IE,) is

28, =7 —EJ[T:'_“"] (25)

“ Per Mty *

For a diabatic process [e.g., increasing vapor pressure from ey(T,,) to es(T,) along the
saturation vapor pressure curve in Fig. 3], the air temperature must also be in-
creased from T, to T,.
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Graphical represe niation of enthalpy change dueto ewvaporation from a wet surface.

Figure 3. Enthalpy change due to heating and evaporation from a wet surface.

Part of the external energy supply contributes to evaporation and the remainder in-
creases temperature. The amount of energy needed to increase the temperature
from T,, to T, is equal to the amount needed to increase the vapor pressure from e to
es(Ty). The total amount of energy needed to increase the temperature from Ty, to T,
and the vapor pressure e4(T,,) to es(T,) is equal to the energy needed to raise the va-
por pressure from e to es(T,). Therefore, the fraction of the total energy going to va-
porization is given by

7/8



If we simplify the ratio, we get the fraction of total external energy supply going to

vaporization Ao Therefore, the rate of diabatic contribution to latent heat flux
¥
density (lEy) is
Fiy
JIE =
g & + ¥ * Qm (28)

The sum of the diabatic and adiabatic contributions provides an estimate of the la-

tent heat flux density
AE =28, + a8, -2 g + £ o(T)— (29)
A L B

Clearly, this is identical to the Penman-Monteith equation for a leaf (Eq. 13), which
was derived using flux gradient concepts. The same steps (Eqgs. 14-17) are used to ar-
rive at the Penman-Monteith equation for a canopy (Eq. 18). Remember that

% is simply an estimate for T - T,, where T, is the wet-bulb temperature. We
are assuming that the surface is wet and the surface temperature is approximately
equal to the wet-bulb temperature. If the surface is not ‘nearly’ wet, then the equa-
tion is not valid. We are also assuming that D is a good approximation for
e,(T)-e,(Z,)
T-T,
Penman-Monteith equation is to use an independent measure of [E and equation 13

. This may not be true for very dry air. Perhaps the best use of the

or 18 to investigate physiological differences in stomatal or canopy resistance be-
tween plant or crop species. If the assumptions are valid, it can also be used to esti-
mate the maximum evaporation rate for a leaf or canopy.
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